Displaying similar documents to “Universal spaces for strictly convex Banach Spaces.”

A survey on the Szlenk index and some of its applications.

Gilles Lancien (2006)

RACSAM

Similarity:

We describe how the Szlenk index has been used in various areas of the geometry of Banach spaces. We cover the following domains of application of this notion: non existence of universal spaces, linear classification of C(K) spaces, descriptive set theory, renorming problems and non linear classification of Banach spaces.

A converse to Amir-Lindenstrauss theorem in complex Banach spaces.

Ondrej F. K. Kalenda (2006)

RACSAM

Similarity:

We show that a complex Banach space is weakly Lindelöf determined if and only if the dual unit ball of any equivalent norm is weak* Valdivia compactum. We deduce that a complex Banach space X is weakly Lindelöf determined if and only if any nonseparable Banach space isomorphic to a complemented subspace of X admits a projectional resolution of the identity. These results complete the previous ones on real spaces.

A generalization of the Hahn-Banach theorem

Jolanta Plewnia (1993)

Annales Polonici Mathematici

Similarity:

If C is a non-empty convex subset of a real linear space E, p: E → ℝ is a sublinear function and f:C → ℝ is concave and such that f ≤ p on C, then there exists a linear function g:E → ℝ such that g ≤ p on E and f ≤ g on C. In this result of Hirano, Komiya and Takahashi we replace the sublinearity of p by convexity.

Decomposition of Banach Space into a Direct Sum of Separable and Reflexive Subspaces and Borel Maps

Plichko, Anatolij (1997)

Serdica Mathematical Journal

Similarity:

* This paper was supported in part by the Bulgarian Ministry of Education, Science and Technologies under contract MM-506/95. The main results of the paper are: Theorem 1. Let a Banach space E be decomposed into a direct sum of separable and reflexive subspaces. Then for every Hausdorff locally convex topological vector space Z and for every linear continuous bijective operator T : E → Z, the inverse T^(−1) is a Borel map. Theorem 2. Let us assume the continuum hypothesis....

Some remarks on the space of differences of sublinear functions

Sven Bartels, Diethard Pallaschke (1994)

Applicationes Mathematicae

Similarity:

Two properties concerning the space of differences of sublinear functions D(X) for a real Banach space X are proved. First, we show that for a real separable Banach space (X,‖·‖) there exists a countable family of seminorms such that D(X) becomes a Fréchet space. For X = ℝ^n this construction yields a norm such that D(ℝ^n) becomes a Banach space. Furthermore, we show that for a real Banach space with a smooth dual every sublinear Lipschitzian function can be expressed by the Fenchel...