The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On universal composition of maps.”

Finite-to-one maps and dimension

Jerzy Krzempek (2004)

Fundamenta Mathematicae

Similarity:

It is shown that for every at most k-to-one closed continuous map f from a non-empty n-dimensional metric space X, there exists a closed continuous map g from a zero-dimensional metric space onto X such that the composition f∘g is an at most (n+k)-to-one map. This implies that f is a composition of n+k-1 simple ( = at most two-to-one) closed continuous maps. Stronger conclusions are obtained for maps from Anderson-Choquet spaces and ones that satisfy W. Hurewicz's condition (α). The...

Turbulent maps and their ω-limit sets

F. Balibrea, C. La Paz (1997)

Annales Polonici Mathematici

Similarity:

One-dimensional turbulent maps can be characterized via their ω-limit sets [1]. We give a direct proof of this characterization and get stronger results, which allows us to obtain some other results on ω-limit sets, which previously were difficult to prove.

Dissident maps on the seven-dimensional Euclidean space

Ernst Dieterich, Lars Lindberg (2003)

Colloquium Mathematicae

Similarity:

Our article contributes to the classification of dissident maps on ℝ ⁷, which in turn contributes to the classification of 8-dimensional real division algebras. We study two large classes of dissident maps on ℝ ⁷. The first class is formed by all composed dissident maps, obtained from a vector product on ℝ ⁷ by composition with a definite endomorphism. The second class is formed by all doubled dissident maps, obtained as the purely imaginary parts of the structures...

Locallyn-Connected Compacta and UV n -Maps

V. Valov (2015)

Analysis and Geometry in Metric Spaces

Similarity:

We provide a machinery for transferring some properties of metrizable ANR-spaces to metrizable LCn-spaces. As a result, we show that for completely metrizable spaces the properties ALCn, LCn and WLCn coincide to each other. We also provide the following spectral characterizations of ALCn and celllike compacta: A compactum X is ALCn if and only if X is the limit space of a σ-complete inverse system S = {Xα , pβ α , α < β < τ} consisting of compact metrizable LCn-spaces Xα such that...