Displaying similar documents to “Convergence of the averages and finiteness of ergodic power funtions in weighted L1 spaces.”

Almost everywhere convergence and boundedness of Cesàro-α ergodic averages in L-spaces.

Francisco J. Martín Reyes, María Dolores Sarrión Gavilán (1999)

Publicacions Matemàtiques

Similarity:

Let (X, μ) be a σ-finite measure space and let τ be an ergodic invertible measure preserving transformation. We study the a.e. convergence of the Cesàro-α ergodic averages associated with τ and the boundedness of the corresponding maximal operator in the setting of L(wdμ) spaces.

Genericity of nonsingular transformations with infinite ergodic index

J. Choksi, M. Nadkarni (2000)

Colloquium Mathematicae

Similarity:

It is shown that in the group of invertible measurable nonsingular transformations on a Lebesgue probability space, endowed with the coarse topology, the transformations with infinite ergodic index are generic; they actually form a dense G δ set. (A transformation has infinite ergodic index if all its finite Cartesian powers are ergodic.) This answers a question asked by C. Silva. A similar result was proved by U. Sachdeva in 1971, for the group of transformations preserving an infinite...