On the equivalence of Hermitian inner products on topological *-algebras.
Abel, Mart, Abel, Mati (2010)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Abel, Mart, Abel, Mati (2010)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Schmoeger, Christoph (2005)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Ergun, Ebru (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Lomidze, I. (1996)
Georgian Mathematical Journal
Similarity:
Bachir, A., Segres, A. (2009)
International Journal of Open Problems in Computer Science and Mathematics. IJOPCM
Similarity:
Pappas, Dimitrios (2011)
Annals of Functional Analysis (AFA) [electronic only]
Similarity:
Jucha, Piotr (2002)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
Sánchez, Cristián U., Dal Lago, Walter, Calí, Ana L., Tala, José (2003)
Beiträge zur Algebra und Geometrie
Similarity:
Amina Šahović, Fikret Vajzović (2008)
Matematički Vesnik
Similarity:
Znojil, Miloslav (2009)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Mostafa Mbekhta (2007)
Extracta Mathematicae
Similarity:
Let H be an infinite-dimensional separable complex Hilbert space and B(H) the algebra of all bounded linear operators on H. For an operator T in B(H), let σ(T) denote the generalized spectrum of T. In this paper, we prove that if φ: B(H) → B(H) is a surjective linear map, then φ preserves the generalized spectrum (i.e. σ(φ(T)) = σ(T) for every T ∈ B(H)) if and only if there is A ∈ B(H) invertible such that either φ(T) = ATA for every T ∈ B(H), or φ(T) = ATA for every T ∈ B(H). Also,...
Sibe Mardešić (1993)
Fundamenta Mathematicae
Similarity: