The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Optimal Sobolev embeddings on Rn.”

Differentiation bases for Sobolev functions on metric spaces.

Petteri Harjulehto, Juha Kinnunen (2004)

Publicacions Matemàtiques

Similarity:

We study Lebesgue points for Sobolev functions over other collections of sets than balls. Our main result gives several conditions for a differentiation basis, which characterize the existence of Lebesgue points outside a set of capacity zero.

Optimality of embeddings of Bessel-potential-type spaces into generalized Hölder spaces.

Amiran Gogatishvili, Júlio S. Neves, Bohumír Opic (2005)

Publicacions Matemàtiques

Similarity:

We establish the sharpness of embedding theorems for Bessel-potential spaces modelled upon Lorentz-Karamata spaces and we prove the non-compactness of such embeddings. Target spaces in our embeddings are generalized Hölder spaces. As consequences of our results, we get continuous envelopes of Bessel-potential spaces modelled upon Lorentz-Karamata spaces.

Weighted Hardy's inequalities for negative indices.

Dmitryi V. Prokhorov (2004)

Publicacions Matemàtiques

Similarity:

In the paper we obtain a precise characterization of Hardy type inequalities with weights for the negative indices and the indices between 0 and 1 and establish a duality between these cases.

q-plurisubharmonicity and q-pseudoconvexity in C.

Nguyen Quang Dieu (2006)

Publicacions Matemàtiques

Similarity:

We generalize classical results for plurisubharmonic functions and hyperconvex domain to q-plurisubharmonic functions and q-hyperconvex domains. We show, among other things, that B-regular domains are q-hyperconvex. Moreover, some smoothing results for q-plurisubharmonic functions are also given.