Constructive dimension theory
F. Richman, G. Berg, H. Cheng, R. Mines (1976)
Compositio Mathematica
Similarity:
F. Richman, G. Berg, H. Cheng, R. Mines (1976)
Compositio Mathematica
Similarity:
J. H. Roberts, F. G. Slaughert, Jr. (1968)
Fundamenta Mathematicae
Similarity:
M. Charalambous (1976)
Fundamenta Mathematicae
Similarity:
Aarts J. M. (1968)
Fundamenta Mathematicae
Similarity:
H. Toruńczyk (1985)
Fundamenta Mathematicae
Similarity:
Takahisa Miyata, Žiga Virk (2013)
Fundamenta Mathematicae
Similarity:
Hurewicz's dimension-raising theorem states that dim Y ≤ dim X + n for every n-to-1 map f: X → Y. In this paper we introduce a new notion of finite-to-one like map in a large scale setting. Using this notion we formulate a dimension-raising type theorem for asymptotic dimension and asymptotic Assouad-Nagata dimension. It is also well-known (Hurewicz's finite-to-one mapping theorem) that dim X ≤ n if and only if there exists an (n+1)-to-1 map from a 0-dimensional space onto X. We formulate...
Herrmann Haase (1988)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: