Minimal projections in tensor product spaces.
Khalil, R. (2002)
Rendiconti del Seminario Matematico
Similarity:
Khalil, R. (2002)
Rendiconti del Seminario Matematico
Similarity:
E. Strzelecki (1963)
Colloquium Mathematicae
Similarity:
Asit Baran-Raha (1972)
Colloquium Mathematicae
Similarity:
L Moser (1959)
Acta Arithmetica
Similarity:
William Parry, Peter Walters (1970)
Compositio Mathematica
Similarity:
Dusa McDuff (1981)
Annales de l'institut Fourier
Similarity:
Necessary conditions are found for a Cantor subset of the circle to be minimal for some -diffeomorphism. These conditions are not satisfied by the usual ternary Cantor set.
Clemens Heuberger (2002)
Journal de théorie des nombres de Bordeaux
Similarity:
We consider minimal redundant digit expansions in canonical number systems in the gaussian integers. In contrast to the case of rational integers, where the knowledge of the two least significant digits in the “standard” expansion suffices to calculate the least significant digit in a minimal redundant expansion, such a property does not hold in the gaussian numbers : We prove that there exist pairs of numbers whose non-redundant expansions agree arbitrarily well but which have different...
W. Odyniec, M. P. Prophet (2008)
Banach Center Publications
Similarity:
In this report we discuss the applications of the strong unicity constant and highlight its use in the minimal projection problem.
H. Fredricksen, E. J. Ionascu, F. Luca, P. Stănică (2008)
Acta Arithmetica
Similarity:
Krzysztof Bolibok (2014)
Studia Mathematica
Similarity:
We show that every subspace of finite codimension of the space C[0,1] is extremal with respect to the minimal displacement problem.
J. Marshall Ash, A. Eduardo Gatto, Stephen Vági (1990)
Colloquium Mathematicae
Similarity:
Aikawa, Hiroaki (1993)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity: