Displaying similar documents to “Contact normal submanifolds and contact generic normal submanifolds in Kenmotsu manifolds.”

Warped product submanifolds of Kaehler manifolds with a slant factor

Bayram Sahin (2009)

Annales Polonici Mathematici

Similarity:

Recently, we showed that there exist no warped product semi-slant submanifolds in Kaehler manifolds. On the other hand, Carriazo introduced anti-slant submanifolds as a particular class of bi-slant submanifolds. In this paper, we study such submanifolds in detail and show that they are useful to define a new kind of warped product submanifolds of Kaehler manifolds. In this direction, we obtain the existence of warped product hemi-slant (anti-slant) submanifolds with examples. We give...

Slant submanifolds in cosymplectic manifolds

Ram Shankar Gupta, S. M. Khursheed Haider, A. Sharfuddin (2006)

Colloquium Mathematicae

Similarity:

We give some examples of slant submanifolds of cosymplectic manifolds. Also, we study some special slant submanifolds, called austere submanifolds, and establish a relation between minimal and anti-invariant submanifolds which is based on properties of the second fundamental form. Moreover, we give an example to illustrate our result.

An improved Chen-Ricci inequality for special slant submanifolds in Kenmotsu space forms

Simona Costache, Iuliana Zamfir (2014)

Annales Polonici Mathematici

Similarity:

B. Y. Chen [Arch. Math. (Basel) 74 (2000), 154-160] proved a geometrical inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature. Recently, this Chen-Ricci inequality was improved in [Int. Electron. J. Geom. 2 (2009), 39-45]. On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726] established a Chen-Ricci inequality for submanifolds, in particular in contact slant submanifolds,...

CR submanifolds of maximal CR dimension in complex manifolds

Mirjana Djorić, Masafumi Okumura (2002)

Banach Center Publications

Similarity:

The aim of this paper is to investigate n-dimensional real submanifolds of complex manifolds in the case when the maximal holomorphic tangent space is (n-1)-dimensional. In particular, we give some examples and we consider the Levi form on these submanifolds, especially when the ambient space is a complex space form. Moreover, we show that on some remarkable class of real hypersurfaces of complex space forms, the Levi form cannot vanish identically.