The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Contact normal submanifolds and contact generic normal submanifolds in Kenmotsu manifolds.”

Warped product submanifolds of Kaehler manifolds with a slant factor

Bayram Sahin (2009)

Annales Polonici Mathematici

Similarity:

Recently, we showed that there exist no warped product semi-slant submanifolds in Kaehler manifolds. On the other hand, Carriazo introduced anti-slant submanifolds as a particular class of bi-slant submanifolds. In this paper, we study such submanifolds in detail and show that they are useful to define a new kind of warped product submanifolds of Kaehler manifolds. In this direction, we obtain the existence of warped product hemi-slant (anti-slant) submanifolds with examples. We give...

Slant submanifolds in cosymplectic manifolds

Ram Shankar Gupta, S. M. Khursheed Haider, A. Sharfuddin (2006)

Colloquium Mathematicae

Similarity:

We give some examples of slant submanifolds of cosymplectic manifolds. Also, we study some special slant submanifolds, called austere submanifolds, and establish a relation between minimal and anti-invariant submanifolds which is based on properties of the second fundamental form. Moreover, we give an example to illustrate our result.

An improved Chen-Ricci inequality for special slant submanifolds in Kenmotsu space forms

Simona Costache, Iuliana Zamfir (2014)

Annales Polonici Mathematici

Similarity:

B. Y. Chen [Arch. Math. (Basel) 74 (2000), 154-160] proved a geometrical inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature. Recently, this Chen-Ricci inequality was improved in [Int. Electron. J. Geom. 2 (2009), 39-45]. On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726] established a Chen-Ricci inequality for submanifolds, in particular in contact slant submanifolds,...

CR submanifolds of maximal CR dimension in complex manifolds

Mirjana Djorić, Masafumi Okumura (2002)

Banach Center Publications

Similarity:

The aim of this paper is to investigate n-dimensional real submanifolds of complex manifolds in the case when the maximal holomorphic tangent space is (n-1)-dimensional. In particular, we give some examples and we consider the Levi form on these submanifolds, especially when the ambient space is a complex space form. Moreover, we show that on some remarkable class of real hypersurfaces of complex space forms, the Levi form cannot vanish identically.