Manifolds as branched covers of spheres.
Ricardo Piergallini (1989)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Ricardo Piergallini (1989)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Mark E. Feighn (1986)
Collectanea Mathematica
Similarity:
José María Montesinos-Amilibia (2003)
Revista Matemática Complutense
Similarity:
In this paper, a representation of closed 3-manifolds as branched coverings of the 3-sphere, proved in [13], and showing a relationship between open 3-manifolds and wild knots and arcs will be illustrated by examples. It will be shown that there exist a 3-fold simple covering p : S --> S branched over the remarkable simple closed curve of Fox [4] (a wild knot). Moves are defined such that when applied to a branching set, the corresponding covering manifold remains unchanged, while...
Maria Rita Casali (1992)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
In this work, we prove that every closed, orientable 3-manifold M which is a two-fold covering of S branched over a link, has type six.
Luigi Grasselli, Michele Mulazzani (1999)
Disertaciones Matemáticas del Seminario de Matemáticas Fundamentales
Similarity:
Iori, Massimiliano, Piergallini, Riccardo (2002)
Geometry & Topology
Similarity:
Hilden, Mike, Montesinos, José M., Tejada, Débora, Toro, Margarita (2005)
Revista Colombiana de Matemáticas
Similarity:
Eric Robinson (1979)
Fundamenta Mathematicae
Similarity:
José María Montesinos-Amilibia (2003)
Revista Matemática Complutense
Similarity:
There is a disk in S whose interior is PL embedded and whose boundary has a tame Cantor set of locally wild points, such that the n-fold cyclic coverings of S branched over the boundary of the disk are all S. An uncountable set of inequivalent wild knots with these properties is exhibited.
Todea, Mihaela (2002)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
José María Montesinos Amilibia (2008)
RACSAM
Similarity:
This is a survey of some consequences of the fact that the fundamental group of the orbifold with singular set the Borromean link and isotropy cyclic of order 4 is a universal kleinian group.