The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.”

Eigenfunctions of the Hardy-Littlewood maximal operator

Leonardo Colzani, Javier Pérez Lázaro (2010)

Colloquium Mathematicae

Similarity:

We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.

A₁-regularity and boundedness of Calderón-Zygmund operators

Dmitry V. Rutsky (2014)

Studia Mathematica

Similarity:

The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded...

Hardy Inequality in Variable Exponent Lebesgue Spaces

Diening, Lars, Samko, Stefan (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26D10, 46E30, 47B38 We prove the Hardy inequality and a similar inequality for the dual Hardy operator for variable exponent Lebesgue spaces.