Large construction for nonsolvable Lie algebras.
Ciobanu, Camelia, Colţescu, Ion (2004)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ciobanu, Camelia, Colţescu, Ion (2004)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Ian Stewart (1972)
Compositio Mathematica
Similarity:
Gary E. Stevens (1978)
Compositio Mathematica
Similarity:
Helmer Aslaksen, Terje Wahl (1993)
Mathematica Scandinavica
Similarity:
Cohen, A.M., de Graaf, W.A., Rónyai, L. (1997)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Saïd Benayadi (1996)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Galitski, L.Yu., Timashev, D.A. (1999)
Journal of Lie Theory
Similarity:
Chunyue Wang, Qingcheng Zhang (2018)
Czechoslovak Mathematical Journal
Similarity:
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.
Benalili, Mohammed, Lansari, Azzedine (2001)
Journal of Lie Theory
Similarity:
de Graaf, W.A. (2005)
Experimental Mathematics
Similarity:
Xiaofei Qi, Jinchuan Hou (2010)
Studia Mathematica
Similarity:
A linear map L on an algebra is said to be Lie derivable at zero if L([A,B]) = [L(A),B] + [A,L(B)] whenever [A,B] = 0. It is shown that, for a 𝒥-subspace lattice ℒ on a Banach space X satisfying dim K ≠ 2 whenever K ∈ 𝒥(ℒ), every linear map on ℱ(ℒ) (the subalgebra of all finite rank operators in the JSL algebra Alg ℒ) Lie derivable at zero is of the standard form A ↦ δ (A) + ϕ(A), where δ is a generalized derivation and ϕ is a center-valued linear map. A characterization of linear...