Large construction for nonsolvable Lie algebras.
Ciobanu, Camelia, Colţescu, Ion (2004)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Ciobanu, Camelia, Colţescu, Ion (2004)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Ian Stewart (1972)
Compositio Mathematica
Similarity:
Gary E. Stevens (1978)
Compositio Mathematica
Similarity:
Helmer Aslaksen, Terje Wahl (1993)
Mathematica Scandinavica
Similarity:
Cohen, A.M., de Graaf, W.A., Rónyai, L. (1997)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Similarity:
Saïd Benayadi (1996)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Galitski, L.Yu., Timashev, D.A. (1999)
Journal of Lie Theory
Similarity:
Chunyue Wang, Qingcheng Zhang (2018)
Czechoslovak Mathematical Journal
Similarity:
We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.
Benalili, Mohammed, Lansari, Azzedine (2001)
Journal of Lie Theory
Similarity:
de Graaf, W.A. (2005)
Experimental Mathematics
Similarity:
Xiaofei Qi, Jinchuan Hou (2010)
Studia Mathematica
Similarity:
A linear map L on an algebra is said to be Lie derivable at zero if L([A,B]) = [L(A),B] + [A,L(B)] whenever [A,B] = 0. It is shown that, for a 𝒥-subspace lattice ℒ on a Banach space X satisfying dim K ≠ 2 whenever K ∈ 𝒥(ℒ), every linear map on ℱ(ℒ) (the subalgebra of all finite rank operators in the JSL algebra Alg ℒ) Lie derivable at zero is of the standard form A ↦ δ (A) + ϕ(A), where δ is a generalized derivation and ϕ is a center-valued linear map. A characterization of linear...