The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An extension of Simons' inequality and applications.”

On regularization in superreflexive Banach spaces by infimal convolution formulas

Manuel Cepedello-Boiso (1998)

Studia Mathematica

Similarity:

We present here a new method for approximating functions defined on superreflexive Banach spaces by differentiable functions with α-Hölder derivatives (for some 0 < α≤ 1). The smooth approximation is given by means of an explicit formula enjoying good properties from the minimization point of view. For instance, for any function f which is bounded below and uniformly continuous on bounded sets this formula gives a sequence of Δ-convex C 1 , α functions converging to f uniformly on bounded...

A Clarke–Ledyaev Type Inequality for Certain Non–Convex Sets

Ivanov, M., Zlateva, N. (2000)

Serdica Mathematical Journal

Similarity:

We consider the question whether the assumption of convexity of the set involved in Clarke-Ledyaev inequality can be relaxed. In the case when the point is outside the convex hull of the set we show that Clarke-Ledyaev type inequality holds if and only if there is certain geometrical relation between the point and the set.

On Uniformly Convex and Uniformly Kadec-Klee Renomings

Lancien, Gilles (1995)

Serdica Mathematical Journal

Similarity:

We give a new construction of uniformly convex norms with a power type modulus on super-reflexive spaces based on the notion of dentability index. Furthermore, we prove that if the Szlenk index of a Banach space is less than or equal to ω (first infinite ordinal) then there is an equivalent weak* lower semicontinuous positively homogeneous functional on X* satisfying the uniform Kadec-Klee Property for the weak*-topology (UKK*). Then we solve the UKK or UKK* renorming problems for...

The Space of Differences of Convex Functions on [0, 1]

Zippin, M. (2000)

Serdica Mathematical Journal

Similarity:

∗Participant in Workshop in Linear Analysis and Probability, Texas A & M University, College Station, Texas, 2000. Research partially supported by the Edmund Landau Center for Research in Mathematical Analysis and related areas, sponsored by Minerva Foundation (Germany). The space K[0, 1] of differences of convex functions on the closed interval [0, 1] is investigated as a dual Banach space. It is proved that a continuous function f on [0, 1] belongs to K[0, 1] ...

On Bárány's theorems of Carathéodory and Helly type

Ehrhard Behrends (2000)

Studia Mathematica

Similarity:

The paper begins with a self-contained and short development of Bárány’s theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads...