Tauberian Relations between the Abel-Type and the Borel-Type Methods of Summability.
B.L.R. Shawyer, G.S. Yang (1971)
Manuscripta mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B.L.R. Shawyer, G.S. Yang (1971)
Manuscripta mathematica
Similarity:
Vytas Zacharovas (2011)
Acta Arithmetica
Similarity:
P. Erdös (1952)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
David Borwein, Irvine J.W. Robinson (1975)
Journal für die reine und angewandte Mathematik
Similarity:
T. Pati (1954/55)
Mathematische Zeitschrift
Similarity:
Y. Sitaraman (1967)
Mathematische Zeitschrift
Similarity:
S. N. Bhatt (1964)
Matematički Vesnik
Similarity:
Y. Sitaraman (1968)
Mathematische Zeitschrift
Similarity:
Mangalam R. Parameswaran (1975)
Mathematische Zeitschrift
Similarity:
Móricz, Ferenc, Stadtmüller, U. (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ferenc Móricz (2000)
Studia Mathematica
Similarity:
Given ⨍ ∈ , denote by s(w,z) its integral over the rectangle [0,w]× [0,z] and by σ(u,v) its (C,1,1) mean, that is, the average value of s(w,z) over [0,u] × [0,v], where u,v,w,z>0. Our permanent assumption is that (*) σ(u,v) → A as u,v → ∞, where A is a finite number. First, we consider real-valued functions ⨍ and give one-sided Tauberian conditions which are necessary and sufficient in order that the convergence (**) s(u,v) → A as u,v → ∞ follow from (*). Corollaries allow these...
M.S. Rangachari (1967)
Mathematische Zeitschrift
Similarity: