Displaying similar documents to “Necessary conditions for local and global existence to a reaction-diffusion system with fractional derivatives.”

Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions

Farid Nouioua, Bilal Basti (2021)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder's and Banach's fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.

Maximum Principle and Its Application for the Time-Fractional Diffusion Equations

Luchko, Yury (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary In the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative,...

Nonlinear Time-Fractional Differential Equations in Combustion Science

Pagnini, Gianni (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 34A08 (main), 34G20, 80A25 The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar...

Anomalous diffusion phenomena: A kinetic approach

Antoine Mellet (2014-2015)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

In this talk, we review some aspects of the derivation of fractional diffusion equations from kinetic equations and in particular some applications to the description of anomalous energy transport in FPU chains. This is based on joint works with N. Ben Abdallah, L. Cesbron, S. Merino, S. Mischler, C. Mouhot and M. Puel