Numerical solution of Boussinesq equations as a model of interfacial-wave propagation.
Wiryanto, L.H. (2005)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Wiryanto, L.H. (2005)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Bhatti, Zahid Rafiq, Durrani, Ijaz-Ur-Rahman (2001)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Papanicolaou, George (1998)
Documenta Mathematica
Similarity:
Vlastislav Červený, Jaromír Janský (1967)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Kristóf Kály-Kullai, András Volford, Henrik Farkas (2003)
Banach Center Publications
Similarity:
Excitation wave propagation in a heterogeneous medium around a circular obstacle is investigated, when the obstacle is located very eccentrically with respect to the interfacial circle separating the slow inner and the fast outer region. Qualitative properties of the permanent wave fronts are described, and the calculated wave forms are presented.
Khèkalo, S.P. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Zhou, Jiangbo, Tian, Lixin (2009)
Mathematical Problems in Engineering
Similarity:
Z. Godziński, L. Stasierski (1972)
Applicationes Mathematicae
Similarity:
Ahmad, F., Khan, A. (2001)
Mathematical Problems in Engineering
Similarity:
Manuel G. Velarde (1993)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
Hussain, Wasiq (2008)
Applied Mathematics E-Notes [electronic only]
Similarity:
R. Seiler (1973)
Recherche Coopérative sur Programme n°25
Similarity: