The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Griess algebras.”

Centers in domains with quadratic growth

Agata Smoktunowicz (2005)

Open Mathematics

Similarity:

Let F be a field, and let R be a finitely-generated F-algebra, which is a domain with quadratic growth. It is shown that either the center of R is a finitely-generated F-algebra or R satisfies a polynomial identity (is PI) or else R is algebraic over F. Let r ∈ R be not algebraic over F and let C be the centralizer of r. It is shown that either the quotient ring of C is a finitely-generated division algebra of Gelfand-Kirillov dimension 1 or R is PI.