Displaying similar documents to “Maximal subalgebra of Douglas algebra.”

Pervasive algebras and maximal subalgebras

Pamela Gorkin, Anthony G. O'Farrell (2011)

Studia Mathematica

Similarity:

A uniform algebra A on its Shilov boundary X is maximal if A is not C(X) and no uniform algebra is strictly contained between A and C(X). It is essentially pervasive if A is dense in C(F) whenever F is a proper closed subset of the essential set of A. If A is maximal, then it is essentially pervasive and proper. We explore the gap between these two concepts. We show: (1) If A is pervasive and proper, and has a nonconstant unimodular element, then A contains an infinite descending chain...

On weak type inequalities for rare maximal functions in ℝⁿ

A. M. Stokolos (2006)

Colloquium Mathematicae

Similarity:

The study of one-dimensional rare maximal functions was started in [4,5]. The main result in [5] was obtained with the help of some general procedure. The goal of the present article is to adapt the procedure (we call it "dyadic crystallization") to the multidimensional setting and to demonstrate that rare maximal functions have properties not better than the Strong Maximal Function.