Uniqueness of solutions for fourth-order nonlocal boundary value problems.
Henderson, Johnny, Ma, Ding (2006)
Boundary Value Problems [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Henderson, Johnny, Ma, Ding (2006)
Boundary Value Problems [electronic only]
Similarity:
Chyan, Chuan J., Henderson, Johnny (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
M. Greguš (1974)
Annales Polonici Mathematici
Similarity:
Henderson, Johnny (2009)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Józef Wenety Myjak (1973)
Annales Polonici Mathematici
Similarity:
A. Lasota (1975)
Annales Polonici Mathematici
Similarity:
Staněk, Svatoslav (1994)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
Henderson, Johnny (1988)
International Journal of Mathematics and Mathematical Sciences
Similarity:
K. S. Padmanabhan, R. Parvatham (1976)
Annales Polonici Mathematici
Similarity:
Ashordia, M. (1995)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
Jenkinson, Oliver (2000)
Experimental Mathematics
Similarity:
P. Ch. Tsamatos (2004)
Annales Polonici Mathematici
Similarity:
We study a nonlocal boundary value problem for the equation x''(t) + f(t,x(t),x'(t)) = 0, t ∈ [0,1]. By applying fixed point theorems on appropriate cones, we prove that this boundary value problem admits positive solutions with slope in a given annulus. It is remarkable that we do not assume f≥0. Here the sign of the function f may change.