A generalization of the dichromatic polynomial of a graph.
Farrell, E.J. (1981)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Farrell, E.J. (1981)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Farrell, E.J., Whitehead, Earl Glen jun. (1992)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Markus Dod, Tomer Kotek, James Preen, Peter Tittmann (2015)
Discussiones Mathematicae Graph Theory
Similarity:
This paper introduces a trivariate graph polynomial that is a common generalization of the domination polynomial, the Ising polynomial, the matching polynomial, and the cut polynomial of a graph. This new graph polynomial, called the bipartition polynomial, permits a variety of interesting representations, for instance as a sum ranging over all spanning forests. As a consequence, the bipartition polynomial is a powerful tool for proving properties of other graph polynomials and graph...
Courcelle, Bruno (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Farrell, E.J., Wahid, S.A. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Gillman, Richard Alan (1995)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Farrell, E.J. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Farrell, E.J., de Matas, C.M. (1988)
International Journal of Mathematics and Mathematical Sciences
Similarity:
I. Gutman (1978)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Ivan Gutman (1977)
Publications de l'Institut Mathématique
Similarity:
Matchett, Philip (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Beezer, Robert A., Farrell, E.J. (2000)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Galluccio, Anna, Loebl, Martin (1999)
The Electronic Journal of Combinatorics [electronic only]
Similarity: