Displaying similar documents to “Separable injectivity and C * tensor products.”

Operator algebras

T. K. Carne (1979-1980)

Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")

Similarity:

Tensor products of partial algebras.

Miquel Monserrat, Francesc Roselló, Joan Torrens (1992)

Publicacions Matemàtiques

Similarity:

In this paper we introduce the tensor product of partial algebras w.r.t. a quasi-primitive class of partial algebras, and we prove some of its main properties. This construction generalizes the well-known tensor product of total algebras w.r.t. varieties.

Invertibility in tensor products of Q-algebras

Seán Dineen, Pablo Sevilla-Peris (2002)

Studia Mathematica

Similarity:

We consider, using various tensor norms, the completed tensor product of two unital lmc algebras one of which is commutative. Our main result shows that when the tensor product of two Q-algebras is an lmc algebra, then it is a Q-algebra if and only if pointwise invertibility implies invertibility (as in the Gelfand theory). This is always the case for Fréchet algebras.

A general form of non-Frobenius self-injective algebras

Andrzej Skowroński, Kunio Yamagata (2006)

Colloquium Mathematicae

Similarity:

Applying the classical work of Nakayama [Ann. of Math. 40 (1939)], we exhibit a general form of non-Frobenius self-injective finite-dimensional algebras over a field.

Nonassociative real H*-algebras.

Miguel Cabrera, José Martínez Aroza, Angel Rodríguez Palacios (1988)

Publicacions Matemàtiques

Similarity:

We prove that, if A denotes a topologically simple real (non-associative) H*-algebra, then either A is a topologically simple complex H*-algebra regarded as real H*-algebra or there is a topologically simple complex H*-algebra B with *-involution τ such that A = {b ∈ B : τ(b) = b*}. Using this, we obtain our main result, namely: (algebraically) isomorphic topologically simple real H*-algebras are actually *-isometrically isomorphic.