The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Submanifolds of Euclidean space with parallel mean curvature vector.”

A pointwise inequality in submanifold theory

P. J. De Smet, F. Dillen, Leopold C. A. Verstraelen, L. Vrancken (1999)

Archivum Mathematicum

Similarity:

We obtain a pointwise inequality valid for all submanifolds M n of all real space forms N n + 2 ( c ) with n 2 and with codimension two, relating its main scalar invariants, namely, its scalar curvature from the intrinsic geometry of M n , and its squared mean curvature and its scalar normal curvature from the extrinsic geometry of M n in N m ( c ) .

On an inequality of Oprea for Lagrangian submanifolds

Franki Dillen, Johan Fastenakels (2009)

Open Mathematics

Similarity:

We show that a Lagrangian submanifold of a complex space form attaining equality in the inequality obtained by Oprea in [8], must be totally geodesic.

A pinching theorem on complete submanifolds with parallel mean curvature vectors

Ziqi Sun (2003)

Colloquium Mathematicae

Similarity:

Let M be an n-dimensional complete immersed submanifold with parallel mean curvature vectors in an (n+p)-dimensional Riemannian manifold N of constant curvature c > 0. Denote the square of length and the length of the trace of the second fundamental tensor of M by S and H, respectively. We prove that if S ≤ 1/(n-1) H² + 2c, n ≥ 4, or S ≤ 1/2 H² + min(2,(3p-3)/(2p-3))c, n = 3, then M is umbilical. This result generalizes the...