Meromorphic starlike univalent functions with alternating coefficients.
Aouf, M.K., Darwish, H.E. (1994)
Mathematica Pannonica
Similarity:
Aouf, M.K., Darwish, H.E. (1994)
Mathematica Pannonica
Similarity:
Z. A. Lewandowski, R. J. Libera, E. J. Zlotkiewicz (1983)
Annales Polonici Mathematici
Similarity:
Ghanim, F., Darus, M. (2010)
Surveys in Mathematics and its Applications
Similarity:
Uralegaddi, B.A. (1987)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
A. Wesołowski (1991)
Colloquium Mathematicae
Similarity:
Darus, Maslina (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Kim, Yong Chang, Lee, Sang Hun, Owa, Shigeyoshi (1993)
International Journal of Mathematics and Mathematical Sciences
Similarity:
J. Miazga, A. Wesołowski (1991)
Annales Polonici Mathematici
Similarity:
A sufficient univalence condition for meromorphic functions is given
Saif, Amin, Kılıçman, Adem (2011)
Journal of Inequalities and Applications [electronic only]
Similarity:
Shinji Yamashita (1981)
Colloquium Mathematicae
Similarity:
Silverman, H., Suchithra, K., Stephen, B.Adolf, Gangadharan, A. (2008)
Journal of Inequalities and Applications [electronic only]
Similarity:
Darus, M., Joshi, S.B., Sangle, N.D. (2006)
General Mathematics
Similarity:
Wirths, K.-J. (2006)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 30C25, 30C45. Let D denote the open unit disc and f:D→[`C] be meromorphic and injective in D. We further assume that f has a simple pole at the point p О (0,1) and is normalized by f(0) = 0 and f′(0) = 1. In particular, we are concerned with f that map D onto a domain whose complement with respect to [`C] is convex. Because of the shape of f(D) these functions will be called concave univalent functions with pole p and the family of...
Mogra, M.L. (1998)
Mathematica Pannonica
Similarity: