The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The second conjugate algebras of Banach algebras.”

Derivations into iterated duals of Banach algebras

H. Dales, F. Ghahramani, N. Grønbæek (1998)

Studia Mathematica

Similarity:

We introduce two new notions of amenability for a Banach algebra A. The algebra A is n-weakly amenable (for n ∈ ℕ) if the first continuous cohomology group of A with coefficients in the n th dual space A ( n ) is zero; i.e., 1 ( A , A ( n ) ) = 0 . Further, A is permanently weakly amenable if A is n-weakly amenable for each n ∈ ℕ. We begin by examining the relations between m-weak amenability and n-weak amenability for distinct m,n ∈ ℕ. We then examine when Banach algebras in various classes are n-weakly amenable;...

Banach algebras with unique uniform norm II

S. J. Bhatt, H. V. Dedania (2001)

Studia Mathematica

Similarity:

Semisimple commutative Banach algebras 𝓐 admitting exactly one uniform norm (not necessarily complete) are investigated. 𝓐 has this Unique Uniform Norm Property iff the completion U(𝓐) of 𝓐 in the spectral radius r(·) has UUNP and, for any non-zero spectral synthesis ideal ℐ of U(𝓐), ℐ ∩ 𝓐 is non-zero. 𝓐 is regular iff U(𝓐) is regular and, for any spectral synthesis ideal ℐ of 𝓐, 𝓐/ℐ has UUNP iff U(𝓐) is regular and for any spectral synthesis ideal ℐ of U(𝓐), ℐ = k(h(𝓐 ∩...

Extension of multilinear operators on Banach spaces.

Félix Cabello Sánchez, R. García, I. Villanueva (2000)

Extracta Mathematicae

Similarity:

These notes deal with the extension of multilinear operators on Banach spaces. The organization of the paper is as follows. In the first section we study the extension of the product on a Banach algebra to the bidual and some related structures including modules and derivations. Tha approach is elementary and uses the classical Arens' technique. Actually most of the results of section 1 can be easily derived from section 2. In section 2 we consider the problem of extending multilinear...

Amenability for dual Banach algebras

V. Runde (2001)

Studia Mathematica

Similarity:

We define a Banach algebra 𝔄 to be dual if 𝔄 = (𝔄⁎)* for a closed submodule 𝔄⁎ of 𝔄*. The class of dual Banach algebras includes all W*-algebras, but also all algebras M(G) for locally compact groups G, all algebras ℒ(E) for reflexive Banach spaces E, as well as all biduals of Arens regular Banach algebras. The general impression is that amenable, dual Banach algebras are rather the exception than the rule. We confirm this impression. We first show that under certain conditions...

Amenability and the second dual of a Banach algebra

Frédéric Gourdeau (1997)

Studia Mathematica

Similarity:

Amenability and the Arens product are studied. Using the Arens product, derivations from A are extended to derivations from A**. This is used to show directly that A** amenable implies A amenable.

Dual Banach algebras: representations and injectivity

Matthew Daws (2007)

Studia Mathematica

Similarity:

We study representations of Banach algebras on reflexive Banach spaces. Algebras which admit such representations which are bounded below seem to be a good generalisation of Arens regular Banach algebras; this class includes dual Banach algebras as defined by Runde, but also all group algebras, and all discrete (weakly cancellative) semigroup algebras. Such algebras also behave in a similar way to C*- and W*-algebras; we show that interpolation space techniques can be used in place of...

Compact and weakly compact homomorphisms between algebras of differentiable functions.

Manuel González, Joaquín M. Gutiérrez (1990)

Extracta Mathematicae

Similarity:

Many authors have recently studied compact and weakly compact homomorphisms between function algebras. Among them, Lindström and Llavona [2] treat weakly compact continuous homomorphisms between algebras of type C(T) when T is a completely regular Hausdorff space. Llavona asked wether the results in [2] are valid in the case of algebras of differentiable functions on Banach spaces. The purpose of this note is to give an affirmative answer to this question, by proving that...

An amalgamation of the Banach spaces associated with James and Schreier, Part II: Banach-algebra structure

Alistair Bird (2010)

Banach Center Publications

Similarity:

The James-Schreier spaces, defined by amalgamating James' quasi-reflexive Banach spaces and Schreier space, can be equipped with a Banach-algebra structure. We answer some questions relating to their cohomology and ideal structure, and investigate the relations between them. In particular we show that the James-Schreier algebras are weakly amenable but not amenable, and relate these algebras to their multiplier algebras and biduals.

A note on regular elements in Calkin algebras.

Vladimir Rakocevic (1992)

Collectanea Mathematica

Similarity:

An element a of the Banach algebra A is said to be regular provided there is an element b belonging to A such that a = aba. In this note we study the set of regular elements in the Calkin algebra C(X) over an infinite-dimensional complex Banach space X.

On the weak amenability of ℬ(X)

A. Blanco (2010)

Studia Mathematica

Similarity:

We investigate the weak amenability of the Banach algebra ℬ(X) of all bounded linear operators on a Banach space X. Sufficient conditions are given for weak amenability of this and other Banach operator algebras with bounded one-sided approximate identities.