The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on finite codimensional linear isometries of C ( X ) into C ( Y ) .”

On some properties of quotients of homogeneous C(K) spaces

Artur Michalak (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We say that an infinite, zero dimensional, compact Hausdorff space K has property (*) if for every nonempty open subset U of K there exists an open and closed subset V of U which is homeomorphic to K. We show that if K is a compact Hausdorff space with property (*) and X is a Banach space which contains a subspace isomorphic to the space C(K) of all scalar (real or complex) continuous functions on K and Y is a closed linear subspace of X which does not contain any subspace isomorphic...

Relatively open operators and the ubiquitous concept.

R. W. Cross (1994)

Publicacions Matemàtiques

Similarity:

A linear operator T: D(T) ⊂ X → Y, when X and Y are normed spaces, is called (UO) if every infinite dimensional subspace M of D(T) contains another such subspace N for which T|N is open (in the relative sense). The following properties are shown to be equivalent: (i) T is UO, (ii) T is ubiquitously almost open, (iii) no infinite dimensional restriction of T is injective and precompact, (iv) either T is upper semi-Fredholm or T has finite dimensional range, (v) for each infinite dimensional...