### Low regularity and local well-posedness for the $1+3$ dimensional Dirac-Klein-Gordon system.

Tesfahun, Achenef (2007)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Tesfahun, Achenef (2007)

Electronic Journal of Differential Equations (EJDE) [electronic only]

Similarity:

Mathur, Pankaj (2006)

Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]

Similarity:

Petr Gurka, Bohumir Opic (2005)

Revista Matemática Complutense

Similarity:

We prove sharp embeddings of Besov spaces B with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79-92) they have written: ?Nevertheless a direct proof, avoiding the machinery of function spaces, would be desirable.? In our paper we give such a proof even in a more general context. We cover...

Michels, C. (2010)

Annals of Functional Analysis (AFA) [electronic only]

Similarity:

Simian, Dana, Simian, Corina (2006)

Acta Universitatis Apulensis. Mathematics - Informatics

Similarity:

David E. Edmunds, Evans, W. Desmond, Gyorgi E. Karadzhov (2007)

Revista Matemática Complutense

Similarity:

Walther, B.G. (2000)

Acta Mathematica Universitatis Comenianae. New Series

Similarity:

Kalyabin, G.A. (1997)

Georgian Mathematical Journal

Similarity:

Mihailov, Dobrinca, Stan, Ilie (2002)

Novi Sad Journal of Mathematics

Similarity:

Gavrilov, A.V. (2000)

Siberian Mathematical Journal

Similarity:

Josef Dalík (2006)

Archivum Mathematicum

Similarity:

We analyse the error of interpolation of functions from the space ${H}^{3}(a,c)$ in the nodes $a<b<c$ of a regular quadratic Lagrange finite element in 1D by interpolants from the local function space of this finite element. We show that the order of the error depends on the way in which the mutual positions of nodes $a,b,c$ change as the length of interval $[a,c]$ approaches zero.