The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On normally flat Einstein submanifolds.”

Conformally flat submanifolds

Jean-Marie Morvan, Georges Zafindratafa (1986-1987)

Annales de la Faculté des sciences de Toulouse : Mathématiques

Similarity:

Chen-Ricci inequalities for submanifolds of Riemannian and Kaehlerian product manifolds

Erol Kılıç, Mukut Mani Tripathi, Mehmet Gülbahar (2016)

Annales Polonici Mathematici

Similarity:

Some examples of slant submanifolds of almost product Riemannian manifolds are presented. The existence of a useful orthonormal basis in proper slant submanifolds of a Riemannian product manifold is proved. The sectional curvature, the Ricci curvature and the scalar curvature of submanifolds of locally product manifolds of almost constant curvature are obtained. Chen-Ricci inequalities involving the Ricci tensor and the squared mean curvature for submanifolds of locally product manifolds...

On Gauss-Bonnet curvatures.

Labbi, Mohammed-Larbi (2007)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

On the role of partial Ricci curvature in the geometry of submanifolds and foliations

Vladimir Rovenskiĭ (1998)

Annales Polonici Mathematici

Similarity:

Submanifolds and foliations with restrictions on q-Ricci curvature are studied. In §1 we estimate the distance between two compact submanifolds in a space of positive q-Ricci curvature, and give applications to special classes of submanifolds and foliations: k-saddle, totally geodesic, with nonpositive extrinsic q-Ricci curvature. In §2 we generalize a lemma by T. Otsuki on asymptotic vectors of a bilinear form and then estimate from below the radius of an immersed submanifold in a simply...