Displaying similar documents to “A characterization of B * -algebras.”

Vector space isomorphisms of non-unital reduced Banach *-algebras

Rachid ElHarti, Mohamed Mabrouk (2015)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let A and B be two non-unital reduced Banach *-algebras and φ: A → B be a vector space isomorphism. The two following statement holds: If φ is a *-isomorphism, then φ is isometric (with respect to the C*-norms), bipositive and φ maps some approximate identity of A onto an approximate identity of B. Conversely, any two of the later three properties imply that φ is a *-isomorphism. Finally, we show that a unital and self-adjoint spectral isometry between semi-simple Hermitian Banach algebras...

Non-normal elements in Banach *-algebras

B. Yood (2004)

Studia Mathematica

Similarity:

Let A be a Banach *-algebra with an identity, continuous involution, center Z and set of self-adjoint elements Σ. Let h ∈ Σ. The set of v ∈ Σ such that (h + iv)ⁿ is normal for no positive integer n is dense in Σ if and only if h ∉ Z. The case where A has no identity is also treated.

Perturbation theorems for Hermitian elements in Banach algebras

Rajendra Bhatia, Driss Drissi (1999)

Studia Mathematica

Similarity:

Two well-known theorems for Hermitian elements in C*-algebras are extended to Banach algebras. The first concerns the solution of the equation ax - xb = y, and the second gives sharp bounds for the distance between spectra of a and b when a, b are Hermitian.