Positive solutions of the Diophantine equation.
Utz, W.R. (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Utz, W.R. (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Acu, Dumitru (2007)
General Mathematics
Similarity:
Muriefah, Fadwa S.Abu, Bugeaud, Yann (2006)
Revista Colombiana de Matemáticas
Similarity:
Umberto Zannier (2003)
Acta Arithmetica
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
J. H. E. Cohn (2003)
Acta Arithmetica
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Yu. F. Bilu, M. Kulkarni, B. Sury (2004)
Acta Arithmetica
Similarity:
Susil Kumar Jena (2014)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The Diophantine equation A² + nB⁴ = C³ has infinitely many integral solutions A, B, C for any fixed integer n. The case n = 0 is trivial. By using a new polynomial identity we generate these solutions, and then give conditions when the solutions are pairwise co-prime.
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
Xiaolei Dong, W. C. Shiu, C. I. Chu, Zhenfu Cao (2007)
Acta Arithmetica
Similarity:
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Utz, W.R. (1985)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Franušić, Zrinka (2010)
Journal of Integer Sequences [electronic only]
Similarity:
Katalin Gyarmati (2001)
Acta Arithmetica
Similarity: