The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An example of an almost hyperbolic Hermitian manifold.”

CR-submanifolds of locally conformal Kaehler manifolds and Riemannian submersions

Fumio Narita (1996)

Colloquium Mathematicae

Similarity:

We consider a Riemannian submersion π: M → N, where M is a CR-submanifold of a locally conformal Kaehler manifold L with the Lee form ω which is strongly non-Kaehler and N is an almost Hermitian manifold. First, we study some geometric structures of N and the relation between the holomorphic sectional curvatures of L and N. Next, we consider the leaves M of the foliation given by ω = 0 and give a necessary and sufficient condition for M to be a Sasakian manifold.

A Product Twistor Space

Blair, David (2002)

Serdica Mathematical Journal

Similarity:

∗Research supported in part by NSF grant INT-9903302. In previous work a hyperbolic twistor space over a paraquaternionic Kähler manifold was defined, the fibre being the hyperboloid model of the hyperbolic plane with constant curvature −1. Two almost complex structures were defined on this twistor space and their properties studied. In the present paper we consider a twistor space over a paraquaternionic Kähler manifold with fibre given by the hyperboloid of 1-sheet,...

From Sasakian 3-structures to quaternionic geometry

Yoshiyuki Watanabe, Hiroshi Mori (1998)

Archivum Mathematicum

Similarity:

We construct a family of almost quaternionic Hermitian structures from an almost contact metric 3-structure and also do three kinds of quaternionic Kähler structures from a Sasakian 3-structure. In particular we have a generalization of the second main result of Boyer-Galicki-Mann [5].

Three-dimensional locally symmetric almost Kenmotsu manifolds

Yaning Wang (2016)

Annales Polonici Mathematici

Similarity:

We prove that a three-dimensional almost Kenmotsu manifold is locally symmetric if and only if it is locally isometric to either the hyperbolic space ℍ³(-1) or the Riemannian product ℍ²(-4)×ℝ.