Displaying similar documents to “A note on the Boardman theorem.”

On S(2) and S(2) · S(1) structures in 8-dimensional vector bundles.

Martin Cadek, Jirí Vanzura (1997)

Publicacions Matemàtiques

Similarity:

Let ξ be an oriented 8-dimensional vector bundle. We prove that the structure group SO(8) of ξ can be reduced to S(2) or S(2) · S(1) if and only if the vector bundle associated to ξ via a certain outer automorphism of the group Spin(8) has 3 linearly independent sections or contains a 3-dimensional subbundle. Necessary and sufficient conditions for the existence of an S(2)- structure in ξ over a closed connected spin manifold of dimension 8 are also given in terms of characteristic classes. ...

On generation of jets for vector bundles.

Mauro C. Beltrametti, Sandra Di Rocco, Andrew J. Sommese (1999)

Revista Matemática Complutense

Similarity:

We introduce and study the k-jet ampleness and the k-jet spannedness for a vector bundle, E, on a projective manifold. We obtain different characterizations of projective space in terms of such positivity properties for E. We compare the 1-jet ampleness with different notions of very ampleness in the literature.

On jets of surfaces.

Fernando Etayo Gordejuela (1991)

Collectanea Mathematica

Similarity:

We study the 2-jet bundle of mappings of the real plane into a manifold. We shall prove that there exists an imbedding of this 2-jet bundle into a suitable first order jet bundle, in such a way that its image is the set of fixed points of a canonical automorphism of the biggest jet bundle.

The sudoku bundle

Peter Wilson (2010)

Zpravodaj Československého sdružení uživatelů TeXu

Similarity:

The sudoku bundle provides a coordinated set of packages for displaying, solving, and generating Sudoku puzzles. This article describes some of the internal aspects of the packages.

Varieties with generically nef tangent bundles

Thomas Peternell (2012)

Journal of the European Mathematical Society

Similarity:

We study various "generic" nefness and ampleness notions for holomorphic vector bundles on a projective manifold. We apply this in particular to the tangent bundle and investigate the relation to the geometry of the manifold.