The Hasse conjecture for cyclic extensions.
Ishkhanov, V.V., Lur'e, B.B. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Ishkhanov, V.V., Lur'e, B.B. (2005)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Yakovlev, A.V. (2004)
Zapiski Nauchnykh Seminarov POMI
Similarity:
S. Chu, R. Moyer (1966)
Fundamenta Mathematicae
Similarity:
Borges, Carlos R. (1994)
Portugaliae Mathematica
Similarity:
K Chikawa, K Iséki, T Kusakabe (1962)
Acta Arithmetica
Similarity:
David J. Grynkiewicz (2006)
Acta Arithmetica
Similarity:
S. Rolewicz (2000)
Studia Mathematica
Similarity:
Let (X,d) be a metric space. Let Φ be a linear family of real-valued functions defined on X. Let be a maximal cyclic α(·)-monotone multifunction with non-empty values. We give a sufficient condition on α(·) and Φ for the following generalization of the Rockafellar theorem to hold. There is a function f on X, weakly Φ-convex with modulus α(·), such that Γ is the weak Φ-subdifferential of f with modulus α(·), .
Mária Guregová, Alexander Rosa (1968)
Matematický časopis
Similarity:
Ollis, M.A. (2005)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
D. Martinalis, L. Schneps (1993)
Manuscripta mathematica
Similarity:
K. T. Phelps (1980)
Colloquium Mathematicae
Similarity:
Béla Nagy (2013)
Studia Mathematica
Similarity:
Two characterizations of the reductivity of a cyclic normal operator in Hilbert space are proved: the equality of the sets of cyclic and *-cyclic vectors, and the equality L²(μ) = P²(μ) for every measure μ equivalent to the scalar-valued spectral measure of the operator. A cyclic subnormal operator is reductive if and only if the first condition is satisfied. Several consequences are also presented.