Nonconvex evolution inclusions generated by time-dependent subdifferential operators.
Arseni-Benou, Kate, Halidias, Nikolaos, Papageorgiou, Nikolaos S. (1999)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Arseni-Benou, Kate, Halidias, Nikolaos, Papageorgiou, Nikolaos S. (1999)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Papageorgiou, Nikolaos S. (1994)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Migórski, S. (1995)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Papageorgiou, N.S., Papalini, F. (1996)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Papageorgiou, Nikolaos S. (1986)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Nikolaos S. Papageorgiou (1997)
Czechoslovak Mathematical Journal
Similarity:
In the paper we study the topological structure of the solution set of a class of nonlinear evolution inclusions. First we show that it is nonempty and compact in certain function spaces and that it depends in an upper semicontinuous way on the initial condition. Then by strengthening the hypothesis on the orientor field , we are able to show that the solution set is in fact an -set. Finally some applications to infinite dimensional control systems are also presented.
Nikolaos S. Papageorgiou (1990)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Balachandran, K., Anguraj, A. (1994)
Journal of Applied Mathematics and Stochastic Analysis
Similarity: