The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On a class of contact Riemannian manifolds.”

The Ruelle rotation of Killing vector fields

Konstantin Athanassopoulos (2009)

Colloquium Mathematicae

Similarity:

We present an explicit formula for the Ruelle rotation of a nonsingular Killing vector field of a closed, oriented, Riemannian 3-manifold, with respect to Riemannian volume.

On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor

Hiroshi Endo (1991)

Colloquium Mathematicae

Similarity:

For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show...

Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix

Yana Alexieva, Stefan Ivanov (1999)

Archivum Mathematicum

Similarity:

Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures r 1 = r 2 = 0 , r 3 0 , which are not locally homogeneous, in general.

Anti-invariant Riemannian submersions from almost Hermitian manifolds

Bayram Ṣahin (2010)

Open Mathematics

Similarity:

We introduce anti-invariant Riemannian submersions from almost Hermitian manifolds onto Riemannian manifolds. We give an example, investigate the geometry of foliations which are arisen from the definition of a Riemannian submersion and check the harmonicity of such submersions. We also find necessary and sufficient conditions for a Langrangian Riemannian submersion, a special anti-invariant Riemannian submersion, to be totally geodesic. Moreover, we obtain decomposition theorems for...