Displaying similar documents to “Synthesis of fixed-architecture, robust H 2 and H controllers.”

Robust decentralized H 2 control of multi-channel descriptor systems with norm-bounded parametric uncertainties

Weihua Gui, Ning Chen, Guisheng Zhai (2009)

Kybernetika

Similarity:

This paper considers a robust decentralized H 2 control problem for multi-channel descriptor systems. The uncertainties are assumed to be time-invariant, norm-bounded, and exist in both the system and control input matrices. Our interest is focused on dynamic output feedback. A necessary and sufficient condition for an uncertain multi-channel descriptor system to be robustly stabilizable with a specified H 2 norm is derived in terms of a strict nonlinear matrix inequality (NMI), that is,...

The finite inclusions theorem: a tool for robust design

Theodore E. Djaferis (1998)

Kybernetika

Similarity:

Methods for robust controller design, are an invaluable tool in the hands of the control engineer. Several methodologies been developed over the years and have been successfully applied for the solution of specific robust design problems. One of these methods, is based on the Finite Inclusions Theorem (FIT) and exploits properties of polynomials. This has led to the development of FIT-based algorithms for robust stabilization, robust asymptotic tracking and robust noise attenuation design....

H control design for an adaptive optics system

Nikolaos Denis, Douglas Looze, Jim Huang, David Castañon (1999)

Kybernetika

Similarity:

In this paper we first present a full order H controller for a multi- input, multi-output (MIMO) adaptive optics system. We apply model reduction techniques to the full order H controller and demonstrate that the closed-loop (CL) system with the reduced order H controller achieves the same high level of performance. Upon closer examination of the structure of the reduced order H controller it is found that the dynamical behavior of the reduced order H controller can be accurately approximated...