The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Precompactness and total boundedness in products of metric spaces.”

Quantifying completion.

Lowen, Robert, Windels, Bart (2000)

International Journal of Mathematics and Mathematical Sciences

Similarity:

On the quantification of uniform properties

Robert Lowen, Bart Windels (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Approach spaces ([4], [5]) turned out to be a natural setting for the quantification of topological properties. Thus a measure of compactness for approach spaces generalizing the well-known Kuratowski measure of non-compactness for metric spaces was defined ([3]). This article shows that approach uniformities (introduced in [6]) have the same advantage with respect to uniform concepts: they allow a nice quantification of uniform properties, such as total boundedness and completeness. ...