Groups with many nilpotent subgroups
Patrizia Longobardi, Mercede Maj, Avinoam Mann, Akbar Rhemtulla (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Patrizia Longobardi, Mercede Maj, Avinoam Mann, Akbar Rhemtulla (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jutta Hausen (1981)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Francesco de Giovanni, Alessio Russo (2002)
Mathematica Slovaca
Similarity:
Leonid A. Kurdachenko, Howard Smith (1998)
Publicacions Matemàtiques
Similarity:
Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or min- G. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.
Bernhard Amberg (1976)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Cliff David, James Wiegold (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
James Beidleman, Hermann Heineken, Jack Schmidt (2013)
Open Mathematics
Similarity:
A finite solvable group G is called an X-group if the subnormal subgroups of G permute with all the system normalizers of G. It is our purpose here to determine some of the properties of X-groups. Subgroups and quotient groups of X-groups are X-groups. Let M and N be normal subgroups of a group G of relatively prime order. If G/M and G/N are X-groups, then G is also an X-group. Let the nilpotent residual L of G be abelian. Then G is an X-group if and only if G acts by conjugation on...
M. J. Iranzo, A. Martínez-Pastor, F. Pérez-Monasor (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: