Groups with many nilpotent subgroups
Patrizia Longobardi, Mercede Maj, Avinoam Mann, Akbar Rhemtulla (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Patrizia Longobardi, Mercede Maj, Avinoam Mann, Akbar Rhemtulla (1996)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jutta Hausen (1981)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Francesco de Giovanni, Alessio Russo (2002)
Mathematica Slovaca
Similarity:
Leonid A. Kurdachenko, Howard Smith (1998)
Publicacions Matemàtiques
Similarity:
Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or min- G. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.
Bernhard Amberg (1976)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Cliff David, James Wiegold (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
James Beidleman, Hermann Heineken, Jack Schmidt (2013)
Open Mathematics
Similarity:
A finite solvable group G is called an X-group if the subnormal subgroups of G permute with all the system normalizers of G. It is our purpose here to determine some of the properties of X-groups. Subgroups and quotient groups of X-groups are X-groups. Let M and N be normal subgroups of a group G of relatively prime order. If G/M and G/N are X-groups, then G is also an X-group. Let the nilpotent residual L of G be abelian. Then G is an X-group if and only if G acts by conjugation on...
M. J. Iranzo, A. Martínez-Pastor, F. Pérez-Monasor (1992)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: