A note on strong measure zero sets
A. Andryszczak, Ireneusz Recƚaw (1993)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Andryszczak, Ireneusz Recƚaw (1993)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
A. M. Bruckner, Melvin Rosenfeld (1969)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Maharam, Dorothy (1987)
Portugaliae mathematica
Similarity:
Traina, Charles (2008)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Vladimír Palko (1988)
Mathematica Slovaca
Similarity:
Ihor Stasyuk, Edward D. Tymchatyn (2013)
Colloquium Mathematicae
Similarity:
Spaces of finite n-dimensional Hausdorff measure are an important generalization of n-dimensional polyhedra. Continua of finite linear measure (also called continua of finite length) were first characterized by Eilenberg in 1938. It is well-known that the property of having finite linear measure is not preserved under finite unions of closed sets. Mauldin proved that if X is a compact metric space which is the union of finitely many closed sets each of which admits a σ-finite linear...
Baltasar Rodríguez-Salinas (2003)
RACSAM
Similarity:
Si Σ es una σ-álgebra y X un espacio localmente convexo se estudian las condiciones para las cuales una medida vectorial σ-aditiva γ : Σ → χ tenga una medida de control μ. Si Σ es la σ-álgebra de Borel de un espacio métrico, se obtienen condiciones necesarias y suficientes usando la τ aditividad de γ. También se dan estos resultados para las polimedidas.