The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Some versions of Anderson's and Maher's inequalities. II.”

Fuglede-Putnam theorem for class A operators

Salah Mecheri (2015)

Colloquium Mathematicae

Similarity:

Let A ∈ B(H) and B ∈ B(K). We say that A and B satisfy the Fuglede-Putnam theorem if AX = XB for some X ∈ B(K,H) implies A*X = XB*. Patel et al. (2006) showed that the Fuglede-Putnam theorem holds for class A(s,t) operators with s + t < 1 and they mentioned that the case s = t = 1 is still an open problem. In the present article we give a partial positive answer to this problem. We show that if A ∈ B(H) is a class A operator with reducing kernel and B* ∈ B(K) is a class 𝓨 operator,...

On the Range and the Kernel of Derivations

Bouali, Said, Bouhafsi, Youssef (2006)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 47B47, 47B10; Secondary 47A30. Let H be a separable infinite dimensional complex Hilbert space and let L(H) denote the algebra of all bounded linear operators on H into itself. Given A ∈ L(H), the derivation δA : L(H)→ L(H) is defined by δA(X) = AX-XA. In this paper we prove that if A is an n-multicyclic hyponormal operator and T is hyponormal such that AT = TA, then || δA(X)+T|| ≥ ||T|| for all X ∈ L(H). We establish the...