Displaying similar documents to “Torus knots and Dunwoody manifolds.”

Cyclic branched coverings of 2-bridge knots.

Alberto Cavicchioli, Beatrice Ruini, Fulvia Spaggiari (1999)

Revista Matemática Complutense

Similarity:

In this paper we study the connections between cyclic presentations of groups and the fundamental group of cyclic branched coverings of 2-bridge knots. Then we show that the topology of these manifolds (and knots) arises, in a natural way, from the algebraic properties of such presentations.

On manifold spines and cyclic presentations of groups

Alberto Cavicchioli, Friedrich Hegenbarth, Dušan Repovš (1998)

Banach Center Publications

Similarity:

This is a survey of results and open problems on compact 3-manifolds which admit spines corresponding to cyclic presentations of groups. We also discuss questions concerning spines of knot manifolds and regular neighborhoods of homotopically PL embedded compacta in 3-manifolds.

A characterization of 2-knots groups.

Francisco González-Acuña (1994)

Revista Matemática Iberoamericana

Similarity:

A n-knot group is the fundamental group of the complement of an n-sphere smoothly embedded in Sn+2. Artin gave in 1925 ([A]) an algebraic characterization of 1-knot groups. M. Kervaire gave in 1965 ([K]) an algebraic characterization of n-knot groups for n ≥ 3. The problem of characterizing algebraically 2-knot groups has been posed several times (see for example [Su, Problem 4.7]). Ribbon 2-knot groups have been characterized algebraically by Yajima [Y]. ...

Nonfibered knots and representation shifts

Daniel S. Silver, Susan G. Williams (2009)

Banach Center Publications

Similarity:

A conjecture of [swTAMS] states that a knot is nonfibered if and only if its infinite cyclic cover has uncountably many finite covers. We prove the conjecture for a class of knots that includes all knots of genus 1, using techniques from symbolic dynamics.

Knots with property R + .

Clark, Bradd Evans (1983)

International Journal of Mathematics and Mathematical Sciences

Similarity: