The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Acyclic digraphs and eigenvalues of ( 0 , 1 ) -matrices.”

Limit points of eigenvalues of (di)graphs

Fu Ji Zhang, Zhibo Chen (2006)

Czechoslovak Mathematical Journal

Similarity:

The study on limit points of eigenvalues of undirected graphs was initiated by A. J. Hoffman in 1972. Now we extend the study to digraphs. We prove: 1. Every real number is a limit point of eigenvalues of graphs. Every complex number is a limit point of eigenvalues of digraphs. 2. For a digraph D , the set of limit points of eigenvalues of iterated subdivision digraphs of D is the unit circle in the complex plane if and only if D has a directed cycle. 3. Every limit point of eigenvalues...

Hall exponents of matrices, tournaments and their line digraphs

Richard A. Brualdi, Kathleen P. Kiernan (2011)

Czechoslovak Mathematical Journal

Similarity:

Let A be a square ( 0 , 1 ) -matrix. Then A is a Hall matrix provided it has a nonzero permanent. The Hall exponent of A is the smallest positive integer k , if such exists, such that A k is a Hall matrix. The Hall exponent has received considerable attention, and we both review and expand on some of its properties. Viewing A as the adjacency matrix of a digraph, we prove several properties of the Hall exponents of line digraphs with some emphasis on line digraphs of tournament (matrices). ...