Inertial Automorphisms of an abelian Group
Ulderico Dardano, Silvana Rinauro (2012)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Ulderico Dardano, Silvana Rinauro (2012)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jutta Hausen (1971)
Fundamenta Mathematicae
Similarity:
Marta Morigi (1994)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jutta Hausen, Johnny A. Johnson (1976)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Derek J. S. Robinson (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
D.M. Evans, W. Hodges, I.M. Hodkinson (1991)
Forum mathematicum
Similarity:
George Peschke, Peter Symonds (1994)
Publicacions Matemàtiques
Similarity:
We discuss local global principles for abelian groups by examining the adjoint functor pair obtained by (left adjoint) sending an abelian group A to the local diagram L(A) = {Z(p) ⊗ A → Q ⊗ A} and (right adjoint) applying the inverse limit functor to such diagrams; p runs through all integer primes. We show that the natural map A → lim L(A) is an isomorphism if A has torsion at only finitely many primes. If A is fixed we answer the genus problem of identifying all...
José L. Rodríguez, Jérôme Scherer, Lutz Strüngmann (2004)
Fundamenta Mathematicae
Similarity:
As is well known, torsion abelian groups are not preserved by localization functors. However, Libman proved that the cardinality of LT is bounded by whenever T is torsion abelian and L is a localization functor. In this paper we study localizations of torsion abelian groups and investigate new examples. In particular we prove that the structure of LT is determined by the structure of the localization of the primary components of T in many cases. Furthermore, we completely characterize...
Vlastimil Dlab (1960)
Czechoslovak Mathematical Journal
Similarity:
L. Fuchs (1989)
Manuscripta mathematica
Similarity: