Displaying similar documents to “Graded transcendental extensions of graded fields.”

A Basis for Z-Graded Identities of Matrices over Infinite Fields

Azevedo, Sergio (2003)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 16R10, 16R20, 16R50 The algebra Mn(K) of the matrices n × n over a field K can be regarded as a Z-graded algebra. In this paper, it is proved that if K is an infinite field, all the Z-graded polynomial identities of Mn(K) follow from the identities: x = 0, |α(x)| ≥ n, xy = yx, α(x) = α(y) = 0, xyz = zyx, α(x) = −α(y) = α(z ), where α is the degree of the corresponding variable. This is a generalization of a result of Vasilovsky about...

Z2-Graded Polynomial Identities for Superalgebras of Block-Triangular Matrices

Di Vincenzo, Onofrio (2004)

Serdica Mathematical Journal

Similarity:

000 Mathematics Subject Classification: Primary 16R50, Secondary 16W55. We present some results about the Z2-graded polynomial identities of block-triangular matrix superalgebras R[[A M],[0 B]]. In particular, we describe conditions for the T2-ideal of a such superalgebra to be factorable as the product T2(A)T2(B). Moreover, we give formulas for computing the sequence of the graded cocharacters of R in some interesting case. Partially supported by MURST COFIN...