Displaying similar documents to “Some exact inequalities of Hardy-Littlewood-Pólya type for periodic functions.”

Hardy-Poincaré type inequalities derived from p-harmonic problems

Iwona Skrzypczak (2014)

Banach Center Publications


We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain a family of Hardy-Poincaré inequalities with certain constants, contributing to the question about precise constants in such inequalities posed in [3]. We confirm optimality of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized inequalities with the proof of their optimality.

Refined Hardy inequalities

Hajer Bahouri, Jean-Yves Chemin, Isabelle Gallagher (2006)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze


The aim of this article is to present “refined” Hardy-type inequalities. Those inequalities are generalisations of the usual Hardy inequalities, their additional feature being that they are invariant under oscillations: when applied to highly oscillatory functions, both sides of the refined inequality are of the same order of magnitude. The proof relies on paradifferential calculus and Besov spaces. It is also adapted to the case of the Heisenberg group.