Abstract homotopy theory in procategories
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Timothy Porter (1976)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Murray Heggie (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Rosický, Jiří (2005)
Theory and Applications of Categories [electronic only]
Similarity:
Fritsch, Rudolf, Golasiński, Marek (1998)
Theory and Applications of Categories [electronic only]
Similarity:
Gaucher, Philippe (2006)
Theory and Applications of Categories [electronic only]
Similarity:
Extremiana Aldana, J.Ignazio, Hernández Paricio, L.Javier, Rivas Rodríguez, M.Teresa (1997)
Theory and Applications of Categories [electronic only]
Similarity:
Murray Heggie (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
J. G. Cabello, A. R. Garzón (1994)
Extracta Mathematicae
Similarity:
Afework Solomon (2007)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
S.H. Nienhuys-Cheng (1971)
Mathematische Zeitschrift
Similarity:
Takahisa Miyata (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The category Top of topological spaces and continuous maps has the structures of a fibration category and a cofibration category in the sense of Baues, where fibration = Hurewicz fibration, cofibration = the usual cofibration, and weak equivalence = homotopy equivalence. Concentrating on fibrations, we consider the problem: given a full subcategory 𝓒 of Top, is the fibration structure of Top restricted to 𝓒 a fibration category? In this paper we take the special case where 𝓒 is the...