Isolation and simplicity for the first eigenvalue of the -Laplacian with a nonlinear boundary condition.
Martínez, Sandra, Rossi, Julio D. (2002)
Abstract and Applied Analysis
Similarity:
Martínez, Sandra, Rossi, Julio D. (2002)
Abstract and Applied Analysis
Similarity:
Julián Fernández Bonder, Julio D. Rossi (2002)
Publicacions Matemàtiques
Similarity:
In this paper we study the Sobolev trace embedding W(Ω) → L (∂Ω), where V is an indefinite weight. This embedding leads to a nonlinear eigenvalue problem where the eigenvalue appears at the (nonlinear) boundary condition. We prove that there exists a sequence of variational eigenvalues λ / +∞ and then show that the first eigenvalue is isolated, simple and monotone with respect to the weight. Then we prove a nonexistence result related to the first eigenvalue and we end...
Benedikt, Jiří (2004)
Abstract and Applied Analysis
Similarity:
Raffaele Chiappinelli (1989)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
P. N. Srikanth (1984)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jérôme Busca, Maria J. Esteban, Alexander Quaas (2005)
Annales de l'I.H.P. Analyse non linéaire
Similarity:
Oruganti, Shobha, Shivaji, R. (2006)
Boundary Value Problems [electronic only]
Similarity:
Karim Chaïb (2002)
Publicacions Matemàtiques
Similarity:
The purpose of this paper is to extend the Díaz-Saá’s inequality for the unbounded domains as RN. The proof is based on the Picone’s identity which is very useful in problems involving p-Laplacian. In a second part, we study some properties of the first eigenvalue for a system of p-Laplacian. We use Díaz-Saá’s inequality to prove uniqueness and Egorov’s theorem for the isolation. These results generalize J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis...