The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Beurling algebras A α + ( 𝔻 ) -derivations and extensions.”

Aspects of the theory of derivations

Gerard Murphy (1994)

Banach Center Publications

Similarity:

We survey some old and new results in the theory of derivations on Banach algebras. Although our overview is broad ranging, our principal interest is in recent results concerning conditions on a derivation implying that its range is contained in the radical of the algebra.

Range inclusion results for derivations on noncommutative Banach algebras

Volker Runde (1993)

Studia Mathematica

Similarity:

Let A be a Banach algebra, and let D : A → A be a (possibly unbounded) derivation. We are interested in two problems concerning the range of D: 1. When does D map into the (Jacobson) radical of A? 2. If [a,Da] = 0 for some a ∈ A, is Da necessarily quasinilpotent? We prove that derivations satisfying certain polynomial identities map into the radical. As an application, we show that if [a,[a,[a,Da]]] lies in the prime radical of A for all a ∈ A, then D maps into the radical. This generalizes...

Compactness of derivations from commutative Banach algebras

Matthew J. Heath (2010)

Banach Center Publications

Similarity:

We consider the compactness of derivations from commutative Banach algebras into their dual modules. We show that if there are no compact derivations from a commutative Banach algebra, A, into its dual module, then there are no compact derivations from A into any symmetric A-bimodule; we also prove analogous results for weakly compact derivations and for bounded derivations of finite rank. We then characterise the compact derivations from the convolution algebra ℓ¹(ℤ₊) to its dual. Finally,...

Constructions preserving n -weak amenability of Banach algebras

A. Jabbari, Mohammad Sal Moslehian, H. R. E. Vishki (2009)

Mathematica Bohemica

Similarity:

A surjective bounded homomorphism fails to preserve n -weak amenability, in general. We however show that it preserves the property if the involved homomorphism enjoys a right inverse. We examine this fact for certain homomorphisms on several Banach algebras.