Numerical solution of Boussinesq equations as a model of interfacial-wave propagation.
Wiryanto, L.H. (2005)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Wiryanto, L.H. (2005)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Manuel G. Velarde (1993)
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales
Similarity:
Zhou, Jiangbo, Tian, Lixin (2009)
Mathematical Problems in Engineering
Similarity:
Bhatti, Zahid Rafiq, Durrani, Ijaz-Ur-Rahman (2001)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Gera, Dinesh, Gautam, Mridul, Gangarao, Hota V.S. (1997)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Pudjaprasetya, S.R., Chendra, H.D. (2009)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Feng, Bao-Feng (2004)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Khader, M.M., Al-Bar, R.F. (2011)
Mathematical Problems in Engineering
Similarity:
Vlastislav Červený, Jaromír Janský (1967)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
Stéphane Labbé, Lionel Paumond (2004)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study...