The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Nicely semiramified division algebras over Henselian fields.”

A Basis for Z-Graded Identities of Matrices over Infinite Fields

Azevedo, Sergio (2003)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 16R10, 16R20, 16R50 The algebra Mn(K) of the matrices n × n over a field K can be regarded as a Z-graded algebra. In this paper, it is proved that if K is an infinite field, all the Z-graded polynomial identities of Mn(K) follow from the identities: x = 0, |α(x)| ≥ n, xy = yx, α(x) = α(y) = 0, xyz = zyx, α(x) = −α(y) = α(z ), where α is the degree of the corresponding variable. This is a generalization of a result of Vasilovsky about...

Some properties of graded comultiplication modules

Khaldoun Al-Zoubi, Amani Al-Qderat (2017)

Open Mathematics

Similarity:

Let G be a group with identity e. Let R be a G-graded commutative ring and M a graded R-module. In this paper we will obtain some results concerning the graded comultiplication modules over a commutative graded ring.

Gradings and Graded Identities for the Matrix Algebra of Order Two in Characteristic 2

Koshlukov, Plamen, César dos Reis, Júlio (2012)

Serdica Mathematical Journal

Similarity:

2010 Mathematics Subject Classification: 16R10, 16R99, 16W50. Let K be an infinite field and let M2(K) be the matrix algebra of order two over K. The polynomial identities of M2(K) are known whenever the characteristic of K is different from 2. The algebra M2(K) admits a natural grading by the cyclic group of order 2; the graded identities for this grading are known as well. But M2(K) admits other gradings that depend on the field and on its characteristic. Here we describe...