Displaying similar documents to “Algebraic periods of self-maps of a rational exterior space of rank 2.”

Comments on the height reducing property

Shigeki Akiyama, Toufik Zaimi (2013)

Open Mathematics

Similarity:

A complex number α is said to satisfy the height reducing property if there is a finite subset, say F, of the ring ℤ of the rational integers such that ℤ[α] = F[α]. This property has been considered by several authors, especially in contexts related to self affine tilings and expansions of real numbers in non-integer bases. We prove that a number satisfying the height reducing property, is an algebraic number whose conjugates, over the field of the rationals, are all of modulus one,...

Approximation by continuous rational maps into spheres

Wojciech Kucharz (2014)

Journal of the European Mathematical Society

Similarity:

Investigated are continuous rational maps of nonsingular real algebraic varieties into spheres. In some cases, necessary and sufficient conditions are given for a continuous map to be approximable by continuous rational maps. In particular, each continuous map between unit spheres can be approximated by continuous rational maps.

The Algebraic Multiplicity of Eigenvalues and the Evans Function Revisited

Y. Latushkin, A. Sukhtayev (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

This paper is related to the spectral stability of traveling wave solutions of partial differential equations. In the first part of the paper we use the Gohberg-Rouche Theorem to prove equality of the algebraic multiplicity of an isolated eigenvalue of an abstract operator on a Hilbert space, and the algebraic multiplicity of the eigenvalue of the corresponding Birman-Schwinger type operator pencil. In the second part of the paper we ...

Multiplicative dependence of shifted algebraic numbers

Paulius Drungilas, Artūras Dubickas (2003)

Colloquium Mathematicae

Similarity:

We show that the set obtained by adding all sufficiently large integers to a fixed quadratic algebraic number is multiplicatively dependent. So also is the set obtained by adding rational numbers to a fixed cubic algebraic number. Similar questions for algebraic numbers of higher degrees are also raised. These are related to the Prouhet-Tarry-Escott type problems and can be applied to the zero-distribution and universality of some zeta-functions.

Algebraic Numbers

Yasushige Watase (2016)

Formalized Mathematics

Similarity:

This article provides definitions and examples upon an integral element of unital commutative rings. An algebraic number is also treated as consequence of a concept of “integral”. Definitions for an integral closure, an algebraic integer and a transcendental numbers [14], [1], [10] and [7] are included as well. As an application of an algebraic number, this article includes a formal proof of a ring extension of rational number field ℚ induced by substitution of an algebraic number to...