A new characterization of some alternating and symmetric groups.
Khosravi, Amir, Khosravi, Behrooz (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Khosravi, Amir, Khosravi, Behrooz (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Boya, Luis J. (2011)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
S. V. Jablan (1987)
Matematički Vesnik
Similarity:
Yablan, Slavik (1986)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
S. Lajos (1964)
Matematički Vesnik
Similarity:
R.C. Lyndon (1966)
Colloquium Mathematicae
Similarity:
Colin C. Graham (1977)
Colloquium Mathematicae
Similarity:
S. Rolewicz (1964)
Colloquium Mathematicae
Similarity:
Jerzy Dydak (1975)
Fundamenta Mathematicae
Similarity:
A. F. Palistrant, S. V. Jablan (1991)
Publications de l'Institut Mathématique
Similarity:
Besche, Hans Ulrich, Eick, Bettina, O'Brien, E.A. (2001)
Electronic Research Announcements of the American Mathematical Society [electronic only]
Similarity:
Colin C. Graham (1978)
Colloquium Mathematicae
Similarity:
Cid, Carlos, Schulz, Tilman (2001)
Experimental Mathematics
Similarity:
Ivko, M.N. (2005)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Petersen, Carsten Lunde (1993)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Jesper M. Møller (2002)
Fundamenta Mathematicae
Similarity:
One of the major problems in the homotopy theory of finite loop spaces is the classification problem for p-compact groups. It has been proposed to use the maximal torus normalizer (which at an odd prime essentially means the Weyl group) as the distinguishing invariant. We show here that the maximal torus normalizer does indeed classify many p-compact groups up to isomorphism when p is an odd prime.